装有传感器,执行器和电子控制单元(ECU)的现代车辆可以分为几个称为功能工作组(FWGS)的操作子系统。这些FWG的示例包括发动机系统,变速箱,燃油系统,制动器等。每个FWG都有相关的传感器通道,可以衡量车辆操作条件。这种丰富的数据环境有利于预测维护(PDM)技术的开发。削弱各种PDM技术的是需要强大的异常检测模型,该模型可以识别出明显偏离大多数数据的事件或观察结果,并且不符合正常车辆操作行为的明确定义的概念。在本文中,我们介绍了车辆性能,可靠性和操作(VEPRO)数据集,并使用它来创建一种基于多阶段的异常检测方法。利用时间卷积网络(TCN),我们的异常检测系统可以达到96%的检测准确性,并准确预测91%的真实异常。当利用来自多个FWG的传感器通道时,我们的异常检测系统的性能会改善。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
已经开发了几种事后解释方法来解释预训练的黑盒神经网络。但是,研究工作的差距仍存在差距,以设计固有解释的神经网络。在本文中,我们利用了最近提出的依据实例的事后因果解释方法,使现有的变压器体系结构固有地解释。经过培训后,我们的模型以在给定实例的输入空间中的顶部$ k $区域的形式提供了解释,从而有助于其决策。我们使用三个图像数据集评估了有关二进制分类任务的方法:MNIST,FMNIST和CIFAR。我们的结果表明,与基于因果关系的事后解释器模型相比,我们本来可以解释的模型可以实现更好的解释性结果,同时消除了训练单独的解释器模型的需求。我们的代码可在https://github.com/mvrl/cat-xplain上找到。
translated by 谷歌翻译
强化学习进行推荐和实验的现实应用面临实际挑战:不同匪徒的相对奖励可以在学习代理的一生中发展。要处理这些非机构案件,代理商必须忘记一些历史知识,因为它可能不再与最小化的遗憾有关。我们提出了一种处理非平稳性的解决方案,该解决方案适合于大规模部署,以向业务运营商提供自动适应性优化。我们的解决方案旨在提供可解释的学习,这些学习可以被人类信任,同时响应非平稳性以最大程度地减少遗憾。为此,我们开发了一种自适应的贝叶斯学习代理,该学习者采用了一种新型的动态记忆形式。它可以通过统计假设检验来实现可解释性,通过在比较奖励并动态调整其内存以实现此功能时,通过统计能力的设定点来实现统计能力的设定点。根据设计,代理对不同种类的非平稳性不可知。使用数值模拟,我们将其绩效与现有提案进行比较,并表明在多个非平稳场景下,我们的代理人正确地适应了真实奖励的实际变化。在所有强盗解决方案中,学习和实现最大表现之间都有明确的权衡。与另一种类似强大的方法相比,我们的解决方案在此权衡方面的一个不同点:我们优先考虑可解释性,这依靠更多的学习,而付出了一些遗憾。我们描述了自动优化的大规模部署的体系结构,即服务,我们的代理商在适应不断变化的情况的同时可以实现可解释性。
translated by 谷歌翻译
3D卷积神经网络(3D CNN)在诸如视频序列之类的3D数据中捕获空间和时间信息。然而,由于卷积和汇集机制,信息损失似乎是不可避免的。为了改善3D CNN的视觉解释和分类,我们提出了两种方法; i)使用培训的3dresnext网络聚合到本地(全局 - 本地)离散梯度的层面全局,II)实施注意门控网络以提高动作识别的准确性。拟议的方法打算通过视觉归因,弱监督行动本地化和行动识别,显示各层在3D CNN中被称为全球局部关注的有用性。首先,使用关于最大预测类的BackPropagation培训3dresnext培训并应用于动作分类。然后将每层的梯度和激活取样。稍后,聚合用于产生更细致的注意力,指出了预测类输入视频的最关键部分。我们使用最终关注的轮廓阈值为最终的本地化。我们使用3DCAM使用细粒度的视觉解释来评估修剪视频中的空间和时间动作定位。实验结果表明,该拟议方法产生了丰富的视觉解释和歧视性的关注。此外,通过每个层上的注意栅格的动作识别产生比基线模型更好的分类结果。
translated by 谷歌翻译